
2026/02/01 16:12 1/11 Shell

Wiki - https://wiki.iot-acs.fr/

Shell

Sécurisation exécution

set

set -o pipefail Permet de retourner une erreur quand la première partie d'un pipe est en
erreur

set -o errexit (ou set -e) Force l'arrêt du script en cas d'erreur d'une commande

set -o nounset (ou set -u) Sort en erreur si une variable est utilisée sans avoir été déclarée
préalablement

set -o errtrace (ou set -E)
set -x Mode debug, chaque ligne est affichée lors de l'exécution

Variables

Paramètres

$0 Nom de la commande en cours d'exécution (ou shell courant)
$1..$9 Arguments de la ligne de commande ou de la procédure en cours
$# Nombre d'arguments

$* Liste des arguments (sauf $0) en 1 seul argument en utilisant le séparateur $IFS (“$1 $2 $3
…$n”)

$@ Liste des arguments (sauf $0) en n arguments (“$1” “$2” “$3” …“$n”)
Shift Décale les arguments à gauche, $0 inchangé, $1 perdu, $2 passe dans $1…

Entrées/Sorties

0 : entrée standard
1 : sortie standard
2 : sortie d'erreurs standard

Exemples

1>/dev/null : redirige <stdout> vers la poubelle
2>/dev/null : redirige les erreurs vers la poubelle
1>&2 : redirige <stdout> vers la sortie d’erreurs

Variables prédéfinies

$? Code de retour dernière commande (0 à 255). Code nul = vrai, sinon faux
$$ Numéro de processus en cours d'exécution

Last update: 2025/08/20 10:02 all:bibles:langages:shell https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

$! Numéro du dernier processus lancé en tâche de fond

$_ paramètre le plus récent (ou le chemin abs de la commande pour démarrer le shell
courant immédiatement après le démarrage)

$- options actuelles définies pour le shell
$FUNCNAME Nom de la fonction
$LINENO Numéro de ligne
$IFS Internal Field Separator (utile pour les boucles : IFS=$’\n’)
~dp0 Répertoire où se situe le script en cours d'exécution
%CD% Répertoire courant

Index des variables
Paramètres spéciaux
Variables shell

Bash

PS1 Prompt par défaut de la ligne de commande

PS2 Prompt pour les commandes sur plusieurs lignes suite à \. Par défaut affiche “> ”
sur les lignes suivantes

PS3 Prompt pour les boucles select
PS4 Prompt pour l'exécution en mode debug avec “set -x”
PROMPT_COMMAND Commande exécuté juste avant l'affichage de la variable PS1

https://www.thegeekstuff.com/2008/09/bash-shell-take-control-of-ps1-ps2-ps3-ps4-and-prompt_comm
and/

Alias

\!* désigne la liste des paramètres
\!^ désigne le premier paramètre
\!$ désigne le dernier paramètre
\!:n désigne le nième paramètre

Tableaux

tableau[0]="truc"
tableau[1]="machin"
autre_tableau=("truc" "machin")

${#tableau[@]} indice du dernier élément du tableau (nombre éléments -1)
${!fruits[@]} donne la liste des indices du tableau (pour utilisation dans
une boucle par exemple)

echo ${tableau[1]}
echo ${tableau[*]} # affiche tous les éléments
echo ${tableau[@]} # autre forme, même résultat

https://www.gnu.org/software/bash/manual/html_node/Variable-Index.html
https://www.gnu.org/software/bash/manual/html_node/Special-Parameters.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Variables.html
https://www.thegeekstuff.com/2008/09/bash-shell-take-control-of-ps1-ps2-ps3-ps4-and-prompt_command/
https://www.thegeekstuff.com/2008/09/bash-shell-take-control-of-ps1-ps2-ps3-ps4-and-prompt_command/

2026/02/01 16:12 3/11 Shell

Wiki - https://wiki.iot-acs.fr/

Calcul

Incrémenter de 1 la variable $var:

TOTO=`expr $var + 1`
let "var=var+1"
((var=var+1))
((var++))

Formatage

printf "%*s %*s %*s\n",$lng1,$var1,$lng2,$var2,$lng3,$var3

Shell parameter expansion

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Manipulation de chaînes

Majuscule/Minuscule

texte_premiere_maj="${texte^}" # passe la première lettre en majuscule
texte_maj="${texte^^}" # passe la chaîne complète en majuscule
texte_premiere_min="${texte,}" # passe la première lettre en minuscule
texte_min="${texte,,}" # passe la chaîne complète en minuscule

Remplacement de caractère

${variable//pattern/replacement}

remplace ; par ,
modif_variable=${variable//;/,}
enlever toutes les " dans une chaîne
modif_variable=${variable//\"/}

Extraire une sous chaîne

Exemples

var=banane

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

Last update: 2025/08/20 10:02 all:bibles:langages:shell https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

%a* plus petite chaîne commençant par a (ex : ${var%a*}=ban)
%%a* plus grande chaîne commençant par a
#*a plus petite chaîne terminant par a (ex : ${var#*a}=nane)
##*a plus grande chaîne terminant par a (ex : ${var##*a}=ne)

Utilisation d'un séparateur

var="param1:param2"
IFS=:
set var
var devient param1 param2
param1=$1
param2=$2

Expressions régulières

Les expressions régulières peuvent être utilisées avec bash depuis la version 3 en
utilisant l'opérateur =~

Syntaxe

if [[$VALEUR =~ regex]]; then
 echo "OK"
else
 echo "KO"
fi

Capture

Les variables sont ${BASH_REMATCH[1]} à ${BASH_REMATCH[n]} au lieu de $1 à $n

Vérification expression régulière

https://regex101.com/

Source

https://fr.wikibooks.org/wiki/Programmation_Bash/Regex

https://regex101.com/
https://fr.wikibooks.org/wiki/Programmation_Bash/Regex

2026/02/01 16:12 5/11 Shell

Wiki - https://wiki.iot-acs.fr/

Lire un fichier csv

définir le séparateur , ou ;
IFS=,
while read -r colonne1 colonne2 colonne3; do
 echo $colonne1
 echo $colonne2
 echo $colonne3
done < $fichier_csv

Construire une commande dans une variable

Pour construire une commande à exécuter dans une variable il faut utiliser un tableau pour éviter des
problèmes avec les ' ou “.

ne pas faire
USER="toto"
IP="192.168.0.1"
OPT="-o StrictHostKeyChecking=no"
CMD="$OPT $USER@$IP"
ssh $CMD

utiliser un tableau à la place
CMD=(-o StrictHostKeyChecking=no toto@192.168.0.1)
ssh ${CMD[@]}

Tests

Opérateurs

! négation d’une expression
-a et logique
-o ou logique (le et logique a une préséance plus grande)
\(expr\) parenthèses pour regrouper les expressions (\ pour éviter interprétation)

Fichiers

-r vrai si le fichier existe et accessible en lecture pour l’utilisateur
-w vrai si le fichier existe et accessible en écriture pour l’utilisateur
-x vrai si le fichier existe et accessible en exécution pour l’utilisateur
-f vrai si le fichier existe et est un fichier normal
-d vrai si le fichier existe et est un répertoire
-c vrai si le fichier existe et est du type spécial caractère
-b vrai si le fichier existe et est du type spécial bloc
-s vrai si le fichier existe et a une taille non nulle

Last update: 2025/08/20 10:02 all:bibles:langages:shell https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

-L vrai si le fichier est un lien
-e vrai si fichier régulier ou lien

Chaînes de caractères

-z s1 vrai si la chaîne s1 est de longueur nulle
-n s1 vrai si la chaîne s1 contient au moins un caractère
s1=s2 vrai si les 2 chaînes sont égales (attention aux blancs encadrant le signe =)
s1!=s2 vrai si les 2 chaînes sont différentes
str Vérifie si str n'est pas la chaîne vide; s'il est vide, il renvoie false

Entiers

-ne différent -eq égal
-gt supérieur -lt inférieur
-ge supérieur ou égal -le inférieur ou égal

Fonctions

Fichiers

basename extrait le nom du fichier après le dernier /
dirname extrait le chemin d'accès avant le dernier /

Mathématique

+ Addition `expr a + b`
- Soustraction `expr a - b`
* Multiplication `expr a * b`
/ Division `expr a / b`
% Modulo. Divise l'opérande de gauche par l'opérande de droite et renvoie le reste. `expr a % b`

Saisie clavier : read

options

-p : affiche un prompt
-s : mode silencieux (n'affiche pas ce qui est tapé)
-t : définit un délai d'expiration
-a : stocke les entrées dans un tableau
-n : limite le nombre de caractères à lire
-r : mode raw (n'interprète pas les caractères d'échappement)

exemples

lecture simple

2026/02/01 16:12 7/11 Shell

Wiki - https://wiki.iot-acs.fr/

echo "Entrez votre nom :"
read nom
echo $nom

lecture avec prompt intégré
read -p "Entrez votre âge : " age
echo "$age"

lecture silencieuse pour mot de passe
read -sp "Entrez votre mot de passe : " mdp

Lecture avec délai d'expiration (en secondes)
read -t 5 -p "Vous avez 5 secondes pour répondre : " reponse

Lecture de plusieurs variables
read -p "Entrez prénom et nom : " prenom nom
echo "Prénom : $prenom, Nom : $nom"

Lecture d'un tableau
read -a tableau -p "Entrez plusieurs mots : "
echo "Premier mot : ${tableau[0]}"
echo "Deuxième mot : ${tableau[1]}"

Structures de contrôle

Prise de décision

if

if [expression]
then
 Statement
else
 Statement
fi

if [expression 1]
then
 Statement
elif [expression 2]
then
 Statement
elif [expression 3]
then
 Statement
else

Last update: 2025/08/20 10:02 all:bibles:langages:shell https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

 Statement
fi

case

option="${1}"
case ${option} in
 -f) FILE="${2}"
 echo "File name is $FILE"
 ;;
 -d) DIR="${2}"
 echo "Dir name is $DIR"
 ;;
 *)
 echo "`basename ${0}`:usage: [-f file] | [-d directory]"
 exit 1 # Command to come out of the program with status 1
 ;;
esac

Boucles

Boucle while

a=0
while [$a -lt 10]
do
 echo $a
 a=`expr $a + 1`
done

Boucle for

for var in 0 1 2 3 4 5 6 7 8 9
do
 echo $var
done

for i in $(seq 0 9); do echo $i; done

fruits=("pomme" "orange" "banane" "fraise" "kiwi")

for fruit in "${fruits[@]}"; do
 echo "Fruit: $fruit"
done
for ((i=0; i<${#fruits[@]}; i++)); do
 echo "Fruit $i: ${fruits[$i]}"

2026/02/01 16:12 9/11 Shell

Wiki - https://wiki.iot-acs.fr/

done
for index in "${!fruits[@]}"; do
 echo "Fruit $index: ${fruits[$index]}"
done

Boucle until

a=0
until [! $a -lt 10]
do
 echo $a
 a=`expr $a + 1`
done

Boucle sélection

Permet de créer un menu numéroté

PS3="Please make a selection => " # sans espace autour du signe =
select DRINK in tea cofee water juice appe all none
do
 case $DRINK in
 tea|cofee|water|all)
 echo "Go to canteen"
 ;;
 juice|appe)
 echo "Available at home"
 ;;
 none)
 break
 ;;
 *) echo "ERROR: Invalid selection"
 ;;
 esac
done

Contrôle de boucle

break sort de l'exécution de la boucle. Possibilité d'indiquer un nombre pour sortir de plusieurs
niveau de boucle

continue passe à l'itération suivante de la boucle . Possibilité également de préciser un nombre pour
indiquer un niveau supérieur de boucle

Procédures/Fonctions

function maFonction()
{

Last update: 2025/08/20 10:02 all:bibles:langages:shell https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

 ...
}
maFonction()
{
 ...
}

Les deux syntaxes ont leur avantage :

L'absence du mot-clé permet au script d'être compatible avec les shells Bourne et Korn.
La présence du mot-clé permet d'éviter une collision de nom avec les alias.

Commandes

Nom de fichier

basename

Extraction du nom de fichier (ou repertoire) du chemin donné en entrée. En fait donne la chaîne après
le dernier /.

dirname

Extraction de la partie répertoire du chemin donné en entrée

Astuces

Créer un fichier sans éditeur

cat << tagFIN > nomdufichier
....
...
tagFIN

Sources

Programmation batch
Manipulation chaîne de caractères

https://initscreen.developpez.com/tutoriels/batch/apprendre-la-programmation-de-script-batch/
http://ti1.free.fr/index.php/batch-manipulerles-chaines-de-caracteres/

2026/02/01 16:12 11/11 Shell

Wiki - https://wiki.iot-acs.fr/

From:
https://wiki.iot-acs.fr/ - Wiki

Permanent link:
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

Last update: 2025/08/20 10:02

https://wiki.iot-acs.fr/
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:shell

	Shell
	Sécurisation exécution
	set

	Variables
	Paramètres
	Entrées/Sorties
	Exemples

	Variables prédéfinies
	Bash

	Alias
	Tableaux
	Calcul
	Formatage
	Shell parameter expansion

	Manipulation de chaînes
	Majuscule/Minuscule
	Remplacement de caractère
	${variable//pattern/replacement}

	Extraire une sous chaîne
	Exemples
	Utilisation d'un séparateur

	Expressions régulières
	Syntaxe
	Capture
	Vérification expression régulière
	Source

	Lire un fichier csv
	Construire une commande dans une variable

	Tests
	Opérateurs
	Fichiers
	Chaînes de caractères
	Entiers

	Fonctions
	Fichiers
	Mathématique
	Saisie clavier : read
	options
	exemples

	Structures de contrôle
	Prise de décision
	if
	case

	Boucles
	Boucle while
	Boucle for
	Boucle until
	Boucle sélection
	Contrôle de boucle

	Procédures/Fonctions

	Commandes
	Nom de fichier
	basename
	dirname

	Astuces
	Créer un fichier sans éditeur

	Sources

