2026/02/01 16:12 1/7 Expressions réguliéres

Expressions régulieres

Appariement de motifs

$scalaire m/expr/ modificateur
équivalent a

$scalaire expr/|Imodificateur
L'opérateur !~ est la négation de I'opérateur =~

N'importe quel délimiteur (sauf blanc et alphanumérique) peut remplacer les barres
obliques.

Méta-caracteres

Les méta-caracteres standards (\n, \t, ...) gardent leurs significations.

Annule le méta-sens du méta-caractere qui suit

A |Reconnait le début de la ligne

Reconnaft n’'importe quel caractere (sauf le caractére nouvelle ligne)
$ |Reconnait la fin de la ligne (ou juste avant le caractére nouvelle ligne finale)
| |Alternative
() |Groupement (traiter plus tard)
[1 [Classe de caracteres (traiter plus tard)

\a Alarme

\b Backspace

\e Echappement

\f Form Feed

\n Nouvelle ligne

\r Retour chariot

\t Tabulation

\v Tabulation verticale

\Onnn|Octal

\xnn |Hexadécimal

Quantificateurs standards

Wiki - https://wiki.iot-acs.fr/

http://perldoc.perl.org/functions/m.html

Last update: 2025/08/20 10:04 all:bibles:langages:regular https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:regular

Par défaut un quantificateur est « gourmand », c'est-a-dire qu'il essaie de se
reconnaftre un maximum de fois sans empécher la reconnaissance du reste du motif.
Pour qu'il tente de se reconnaitre un minimum de fois il faut ajouter le caractere « ? »
juste apres le quantificateur.

Quantificateur Gourmand|Non gourmand
Reconnait 0 fois ou plus (équivalent a {0,}) * *7?
Reconnait 1 fois ou plus (équivalent a {1,}) + +?
Reconnait 0 fois ou 1 fois (équivalent a {0,1}) ? 7?7
Reconnait n fois exactement {n} {n}?
Reconnait au moins n fois {n,} {n}?
Reconnait au moins n fois mais pas plus de m fois, {n,m} {n,m}?

Assertions de longueur nulle

\b|Limite d'un mot (le début ou la fin)

\B|Autre chose qu’une limite de mot

\A|Début de la chaine

\Z|Fin de la chaine (ou juste avant le caractére de nouvelle ligne finale)
\z |Fin de la chaine

\A et \Z agissent exactement comme « A » et « $ » sauf qu’ils ne reconnaissent pas les
lignes multiples quand le modificateur /m est utilisé alors que « A » et « $ »
reconnaissent toutes les limites de lignes internes.

Pour reconnaitre la fin réelle de la chaine, en tenant compte du caractere nouvelle
ligne, il faut utiliser \z.

Reconnaissance des mots et des chiffres

\w |Caractere de « mot » (y compris le caractere souligné :)
\W|Caractere de non « mot »

\s |Caractere d'espacement (tabulation \t compris)

\S |Caractere autre qu’espacement

\d |Chiffre

\D |[Non-chiffre

Classe de caracteres

[abcde] |Caractere compris dans (a,b,c,d,e)
[a-€e] Caractere compris dans (a,b,c,d,e)

[a-z] Caractére minuscule
[A-Z] Caractere majuscule
[0-9] Chiffre

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

2026/02/01 16:12 3/7 Expressions réguliéres

[a-zA-Z_0-9] |[Equivalent de \w
A[a-zA-Z _0-9] Equivalent de \W
[\t\n\n\f] |[Equivalent de \s
AL \t\n\n\f] |Equivalent de \S
[0-9] Equivalent de \d
A[0-9] Equivalent de \D

Mémorisation par parentheses

L'utilisation de parenthése permet de regrouper des motifs et de les réutiliser. Les variables $1, $2,
$3, ... mémorisent le motif apparié respectivement dans la premiere parenthese, la seconde, la
troisieme ... Ces opérateurs sont utilisables dans le code, mais aussi dans I'expression réguliere.

Opérateurs $&, $ et $’

$&|Chaine de caracteres trouvée par la derniere recherche de motif réussie

$ Chaine de caracteres précédant tout ce qui a été trouvé au cours de la derniere recherche de
motif réussie.

Chaine de caractere suivant tout ce qui a été trouvé au cours de la derniere recherche de motif
réussie.

$I

Modificateurs

i |[Reconnaissance de motif indépendamment de la case (majuscules/minuscules).

m Permet de traiter les chaines multi-lignes. Les caracteres « A » et « $ » reconnaissent alors
n'importe quel début ou fin de ligne plutét qu’au début ou a la fin.

Permet de traiter une chaine comme une seule ligne. Le caractere « . » reconnait alors n’'importe
quel caractere, méme une fin de ligne.

Substitution

$scalaire s/motif/remplacement/ modificateurs

Remplace « motif » par « remplacement » et retourne le nombre de substitutions effectuées, sinon
renvoie vide.

Toutes les options, modificateurs, mémorisations de m// fonctionnent aussi pour s//

Si aucune chaine n’est spécifiée via =~ ou !~, la substitution s’applique a la variable

$.

Wiki - https://wiki.iot-acs.fr/

http://perldoc.perl.org/functions/s.html

Last update: 2025/08/20 10:04 all:bibles:langages:regular https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:regular

Opérateur de test de précédence

Le caractere « ? » est une assertion de longueur nulle pour tester I'absence de quelque chose en
avant.

Modificateurs

|g|Pour effectuer la substitution plusieurs fois|

Remplacement par liste

tr/listerecherche/listeremplacement/cds

Substitue les occurrences des caracteres recherchés par les caracteres de la liste de remplacement et
retourne le nombre de caracteres remplacés ou supprimés.

tr/// est équivalent a y///

Si aucune chaine n’est spécifiée via =~ ou !~, la substitution s’applique a la variable

$.

Modificateurs

c|C’est le complément de la liste recherchée qui est utilisé.

Les suites de caracteres qui sont remplacés par le méme caractere sont agrégées en un seul
caractere.

d|Tout caractere spécifié dans listerecherche et sans équivalent dans listeremplacement est effacé.

En I'absence du modificateur d, si listeremplacement est plus court que listerecherche,
le dernier caractere est répété autant de fois que nécessaire pour obtenir la méme
longueur.

Si listeremplacement est vide, listerecherche est utilisé a la place. Ce dernier point est
tres pratique pour comptabiliser les occurrences d’'une classe de caractere ou pour
agréger les suites de caracteres d’une classe.

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

http://perldoc.perl.org/functions/tr.html

2026/02/01 16:12 5/7 Expressions réguliéres

Découpage de chaine

split(/motif/,expr, limit

Découpe une chaine et en retourne un tableau de chaine. Par défaut, les champs vides du début sont
gardés et ceux de la fin sont éliminés.

Si limit est positif, il fixe le nombre max de champs du découpage (il est possible que le nombre de
champs soit inférieur). Si limit est omis ou vaut 0, les champs vides de la fin sont supprimés.

En I'absence de expr, découpe la chaine $.
En I'absence de motif, découpe selon les blancs.

On peut avoir un motif plus long qu’un seul caractere.

Exemples
Reconnaissance de pattern
Nombre entier

\d+$/
Nombre décimal

\d+(.\d+)?$/
Adresse IPV4

\d \. (\d \. (\d \. (\d $/

URL

Avec ou sans http/https ou www

http:\/\/www\ . https:\/\/www\. http:\/\/ | https:\/\ a-z0 \

Wiki - https://wiki.iot-acs.fr/

http://perldoc.perl.org/functions/split.html

Last update: 2025/08/20 10:04 all:bibles:langages:regular https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:regular

\.1{1}[a-z0-9]+)*\.[a-z]{2,5}(:[0-9]1{1,5})?(\/.*)?%/

Substitution

$var=~s/A([A]*) *([n]*)/$2 $1/; # Echange les 2 premiers mots
$var=-s/A\s* (. " 7)\s*$/$1/; # Supprime les espaces aux extrémités
de $_

Opérateur de test de précédence

/motl(?'mot2)/ # Reconnait toutes les occurrences de motl
qui ne sont pas suivies de mot2.

s/(\d) (\d\d\d) (?!\d)/$1 $2/g # Formate un entier en mettant des espaces
tous les 3 chiffres en partant de la droite.

Remplacement

tr/A-Z/a-z/; # tout en minuscule dans $

$i=tr/*/*/; # compte les étoiles dans $

$i=tr/0-9%%//%%; # compte les chiffres dans $

tr/a-zA-Z2%%//%%s # Hoooops devient Hops

tr/a-zA-Z/*/cs # remplace tous les non-alphabétique par *
$texte =~ s/;/,/9 # remplace tous les ; par des , dans la variable
$texte

$texte =~ s/™\s+|\s+$//g # Supprime les espaces au début et a la fin
Découpage

split(/ +/, ls .7); # split sur les blancs, quelque soit leur
nombre.

@noms=split(/\s/, ls /etc); # split sur tous les caracteres d’espacement

(espace, tabulation,..)

Exemple d'utilisation avec le fichier /etc/passwd en lisant dans la variable $ligne chaque ligne de la
forme :

<user>:x:<id>:<gid>:<info>:<homepath>:<shellpath>

@tab=split(/:/,$ligne); # récupére la liste en utilisant le
séparateur « : »
($nom)= split(/:/,%$ligne); # récupére le nom d’utilisateur

($nom,undef, $uid)= split(/:/,$ligne); # récupere le nom d’utilisateur et le
user id
($nom, $uid)=(split(/:/,$ligne))[0,2]; # récupere le nom d’utilisateur et le
user id

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

http://perldoc.perl.org/functions/s.html
http://perldoc.perl.org/functions/s.html
http://perldoc.perl.org/functions/s.html
http://perldoc.perl.org/functions/s.html
http://perldoc.perl.org/functions/tr.html
http://perldoc.perl.org/functions/tr.html
http://perldoc.perl.org/functions/tr.html
http://perldoc.perl.org/functions/tr.html
http://perldoc.perl.org/functions/s.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/split.html

2026/02/01 16:12 717 Expressions réguliéres

Optimisation
Compilation préalable

En perl on peut passer I'expression réguliere dans une variable :

$pattern "motif"
$texte /$pattern/
print "Correspondance trouvée\n"

Pour une expression réguliere utilisée plusieurs fois on peut optimiser en compilant I'expression
réguliere avant son utilisation :

$regex = qr/motif/i; # Compile 1'expression réguliére
$texte $regex
print "Correspondance trouvée\n"

« Si la variable contient des caracteres spéciaux d'expression réguliere, ils seront interprétés
comme tels.

e Pour échapper automatiquement les caracteres spéciaux il faut utiliser quotemeta() ou
I'opérateur \Q...\E.

Débogueur en ligne

https://regex101.com/

From:
https://wiki.iot-acs.fr/ - Wiki

Permanent link:
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:regular

Last update: 2025/08/20 10:04

Wiki - https://wiki.iot-acs.fr/

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
https://regex101.com/
https://wiki.iot-acs.fr/
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:regular

	Expressions régulières
	Appariement de motifs
	Méta-caractères
	Quantificateurs standards
	Assertions de longueur nulle
	Reconnaissance des mots et des chiffres
	Classe de caractères
	Mémorisation par parenthèses
	Opérateurs $&, $` et $’
	Modificateurs

	Substitution
	Opérateur de test de précédence
	Modificateurs

	Remplacement par liste
	Modificateurs

	Découpage de chaîne
	Exemples
	Reconnaissance de pattern
	Nombre entier
	Nombre décimal
	Adresse IPV4
	URL

	Substitution
	Opérateur de test de précédence
	Remplacement
	Découpage

	Optimisation
	Compilation préalable

	Débogueur en ligne

