
2026/02/01 16:12 1/5 Librairies

Wiki - https://wiki.iot-acs.fr/

Librairies

Installation

Base

pip install <librairie>

Environnement virtuel

Installer puis utiliser pipenv

Pycharm

créer un environnement virtuel (proposé par Pycharm lors de la création du projet)
A postériori aller dans « File / Settings… / Project / Python Interpreter » cliquer sur « + » puis
taper le nom du module à rechercher puis en bas cliquer sur « Install Package »

Pipenv

Pipenv

Objet

Simplification dans l'utilisation des librairies et création automatique d'un environnement virtuel.

Utilisation

Installation Ubuntu

sudo apt install pipenv

Installation Redhat/CentOS

pip3 install pipenv

https://pypi.org/project/pipenv/

Last update: 2025/08/20 10:10 all:bibles:langages:python:librairies https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:python:librairies

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

Installation Windows

Installer pipenv

pip install pipenv

Modifier la variable PATH pour ajouter les 2 chemins suivants :

C:\Users\<username>\AppData\Roaming\Python\Python38\Site-Packages
C:\Users\<username>\AppData\Roaming\Python\Python38\Scripts

Initialisation

Se positionner dans le répertoire du projet et lancer la commande :

pipenv install --python /usr/bin/python3.8

La commande va installer toutes les librairies nécessaires et créer les 2 fichiers suivants s'ils
n'existent pas encore :

Pipfile : contient les dépendances
Pipfile.lock : contient les informations de version

Variables d'environnement

Possibilité de créer un fichier .env contenant les variables d'environnement pour l'exécution du
programme. Par exemple pour positionner le niveau de log souhaité :

LOG LEVEL
LOGURU_LEVEL=DEBUG

Exécution

pipenv run python <fichier.py>

Dépannage

Débordement de tempo

Si l'installation prend trop de temps elle peut terminer en échec notamment sur Raspberry PI ou bien
en cas de connexion internet trop lente. Pour laisser plus de temps à l'installation il est possible de
modifier 2 temporisation avant de lancer la commande PIPENV :

export PIPENV_INSTALL_TIMEOUT=9999

2026/02/01 16:12 3/5 Librairies

Wiki - https://wiki.iot-acs.fr/

export PIPENV_TIMEOUT=999

Source

Tendo

Tendo

Objet

Ajout de fonctionnalités basiques.

Fonctions

SingleInstance

Pour s'assurer de n'avoir qu'une seule instance du programme.

from tendo import singleton

singleton.SingleInstance() # fera un sys.exit(-1) si une autre instance est
en cours d'exécution

Loguru

Loguru

Objet

Librairies pour gérer simplement les logs du programme.

Utilisation

Fonctions

debug : information détaillée uniquement pour diagnostiquer un problème
info : confirmation du déroulement normal du programme
warning : indication de quelque chose d'inattendu, mais le programme fonctionne normalement

https://stackoverflow.com/questions/51255947/pipenv-install-failing-due-to-timeout
https://pypi.org/project/tendo/
https://loguru.readthedocs.io/

Last update: 2025/08/20 10:10 all:bibles:langages:python:librairies https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:python:librairies

https://wiki.iot-acs.fr/ Printed on 2026/02/01 16:12

error : problème plus important, le programme n'a pas pu faire quelque chose
critical : erreur sérieuse, indique que le programme risque de ne pas pouvoir poursuivre.

Niveau d'information

Chacune des fonctions correspond au niveau de log correspondant. Le niveau par défaut est
positionné à WARNING, ce qui veut dire que seuls les messages à partir de ce niveau sont affichés
(donc pas les niveau DEBUG et INFO).

Exemple

from loguru import logger

logger.setLevel(logging.WARNING)
logger.debug("Ce message ne s'affichera pas")
logger.info("Celui-ci non plus")
logger.warning("Premier message à s'afficher")
logger.error("Celui-ci aussi")
logger.critical("Ce dernier également")

Aiohttp

Aiohttp

Objet

Client/serveur http asynchrone.

Utilisation

Serveur

from aiohttp import web

async def handle(request):
 name = request.match_info.get('name', "Anonymous")
 text = "Hello, " + name
 return web.Response(text=text)

app = web.Application()
app.add_routes([web.get('/', handle),
 web.get('/{name}', handle)])

https://docs.aiohttp.org/

2026/02/01 16:12 5/5 Librairies

Wiki - https://wiki.iot-acs.fr/

if __name__ == '__main__':
 web.run_app(app)

Client

import aiohttp
import asyncio

async def main():

 async with aiohttp.ClientSession() as session:
 async with session.get('http://python.org') as response:

 print("Status:", response.status)
 print("Content-type:", response.headers['content-type'])

 html = await response.text()
 print("Body:", html[:15], "...")

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

From:
https://wiki.iot-acs.fr/ - Wiki

Permanent link:
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:python:librairies

Last update: 2025/08/20 10:10

https://wiki.iot-acs.fr/
https://wiki.iot-acs.fr/doku.php?id=all:bibles:langages:python:librairies

	Librairies
	Installation
	Base
	Environnement virtuel
	Pycharm

	Pipenv
	Objet
	Utilisation
	Installation Ubuntu
	Installation Redhat/CentOS
	Installation Windows
	Initialisation
	Variables d'environnement
	Exécution

	Dépannage
	Débordement de tempo

	Tendo
	Objet
	Fonctions
	SingleInstance

	Loguru
	Objet
	Utilisation
	Fonctions
	Niveau d'information
	Exemple

	Aiohttp
	Objet
	Utilisation
	Serveur
	Client

